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Abstract

Imaging genetics is an emerging methodological field that combines genetic information with 

medical imaging-derived metrics to understand how genetic factors impact observable phenotypes. 

In order for a trait to be a reasonable phenotype in an imaging genetics study, it must be heritable: 

at least some proportion of its variance must be due to genetic influences. The Sequential 

Oligogenic Linkage Analysis Routines (SOLAR) imaging genetics software can estimate the 

heritability of a trait in complex pedigrees. We investigate the ability of SOLAR to accurately 

estimate heritability and common environmental effects on simulated imaging phenotypes in 

various family structures. We found that heritability is reliably estimated with small family-based 

studies of 40 to 80 individuals, though subtle differences remain between the family structures. In 

an imaging application analysis, we found that with 80 subjects in any of the family structures, 

estimated heritability of white matter fractional anisotropy was biased by <10% for every region 

of interest. Results from these studies can be used when investigators are evaluating power in 

planning genetic analyzes.
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1 Introduction

Partitioning and quantification of genetic and environmental factors that influence human 

development, aging, and pathology are necessary for understanding both normal variability 

and clarifying biological mechanisms of diseases. For example, genetic factors have been 

found to affect the formation and operation of brain networks from the micro- to the 

macroscopic scale1–4 while common environmental factors influence brain structure 

volume,5 liability to schizophrenia,6 and development of antisocial behavior and conduct 

disorders.7 Hence, discovery of neuroanatomical or functional variation that occurs from 

both common environment and genetic influences is important in studies aimed at teasing 

apart the etiology of brain development, disease, and disorder.

Sources of individual variability of the cortical landscape are not well understood. Detailed 

explanation of the causes and consequences of morphological variation in brain structure 

could have wide significance and numerous implications for neuroscience, psychology, and 

psychiatry as well as for evolutionary biology. The first step in this direction is to study the 

proportion of individual variance that can be explained by genetic differences among related 

individuals. This measurement, called narrow-sense heritability (h2), is defined as the 

proportion of total phenotypic variance that is explained by additive genetic factors.

High heritability has already been established for a number of neuroimaging-based 

phenotypes such as total brain size, gray matter volume, regional gray matter thickness, 

length of the corpus callosum, and volume of cerebral ventricles.8 In our recent analyses in 

one nonhuman primate species (baboons, Papio hamadryas), we found high heritability for 

brain volume (h2 = 0.86; p < 1e – 4), gray matter volume (h2 = 0.67; p = 0.01), and cortical 

surface area (h2 = 0.73; p < 1e – 3).9 The work presented here is an extension of our 

previous research with the goal of measuring the contribution of intersubject genetic 

differences to regional variation in the degree of cerebral gyrification.

Genome-Wide Association Studies (GWAS) provide a hypothesis-free framework for 

discovering genetic polymorphisms associated with a given phenotype, but these studies 

often necessitate large sample sizes given the generally small effect on trait variance that a 

single genetic marker may have and the burden of correcting for up to a million tests (or 

more).10 In imaging genetics studies, the issue of multiple testing is further magnified by the 

almost infinite traits that can be analyzed; for example, voxel-wise image analysis can have 

hundreds of thousands of data points. Heritability analysis permits the prioritization of traits 

for genetic analysis based on the fraction of unexplained variability in a phenotype due to 

genetic and common environmental factors. Although it is more feasible to obtain a large 

sample size for a study of unrelated cases and controls, which can improve the power of 

GWAS, family studies offer robustness to population substructure issues, and both 

heritability and common environmental variance can be calculated by examining covariance 

structures in related individuals. For example, monozygotic (MZ), or identical, twins share 

100% of their DNA sequence, while dizygotic (DZ) twins, full siblings, and parent/children 

pairs all share on average 50%. In contrast, MZ and DZ twins and full siblings who are 

reared together are expected to share more of a common environment than parent/child 

pairs, though the amount of sharing is debated and may actually be trait specific.11 The 
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expected levels of allele and environment sharing provide an upper bound for comparison 

with a trait of unknown heritability.

The Sequential Oligogenic Linkage Analysis Routines (SOLAR) software package12,13 

provides extensive capabilities for analyzing heritability and common environment variance 

of traits within diverse familial structures. Recently, these tools have been extended to 

improve support and computational efficiency for large-scale neuroimaging data.14,15 These 

studies use SOLAR to evaluate the heritability of measures of the brain derived from 

diffusion tensor imaging which yields quantitative measures sensitive to brain development 

and degeneration. These heritability estimates can be used in future studies to prioritize 

which regions of the brain to analyze in genetic studies (i.e., those regions with higher 

heritiabilities will be prioritized in future studies). The SOLAR package has been 

theoretically and mathematically validated previously,16 and herein, we venture to extend 

this theoretical validation to include validation on modeled datasets (where true heritability 

is known to us and SOLAR’s estimates can be validated against) across different family 

structures and sizes. We characterize heritability and common environment variance 

estimates in three commonly collected study designs: MZ and DZ twins, nuclear families, 

and grandnuclear families. We simulate these family structures and their phenotypes across 

multiple sample sizes, heritabilities, and common environment variances, and we investigate 

the bias and the variability of the estimated genetic and common environment variance after 

analysis of the pedigrees and phenotypes in SOLAR. Results from these studies can be used 

when investigators are evaluating power in planning genetic analyzes.

2 Theory

Our approach follows the standard practice for empirical characterization of statistical 

estimators. We first construct a generative model representative of voxel-wise imaging data 

in the presence of benign confounding effects. Using this model, we simulate known 

pedigree structures and phenotype (trait) heritability to create finite sample data from known 

distributions. We iteratively evaluate the estimators and compute the bias (i.e., expected 

difference between estimated and true heritability values) and variability (i.e., as measured 

by the standard deviation of the observed heritability values) from 100 iterations.

Analysis of linkage structure with SOLAR is based around the standard additive effects 

model

(1)

where y is the trait vector (1 row per subject), X is a matrix of observed additive factors 

(covariates or confounds – 1 row per subject), β is a vector (1 row per additive factor) that 

links additive factors to the trait, and ε is the unmodeled variance/error term. Importantly,

(2)
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where  is the multivariate Gaussian, 0 is the zero vector (1 row per subject), Φ is a matrix 

of the kinship coefficients between subjects (subjects × subjects),  is the variance 

attributable to genetics, γ is a matrix of the common environment coefficients between 

subjects (subjects × subjects),  is the variance attributable to common environment, 1 is 

the identity matrix (subjects × subjects), and  is the environmental variance (i.e., the 

remaining unexplained variance). Note that Φ codes for the expected fraction of genome 

shared between subjects (i.e., identical, MZ twins as 0.5, DZ twins and sibling-sibling as 

0.25, parent–child as 0.25, grandparent–grandchild as 0.125, etc.). Note that γ codes for an 

assumed common environment between relationship pairs. For this study, we assumed that 

children growing up in the same home would be coded as 1, and all other relations would be 

coded as 0.

The heritability, or relative variance attributable to genetic causes (A), is the ratio of  to 

the residual variance in the traits, which is approximately

(3)

under the assumption that total phenotypic variance , is the sum of the genetic and 

environmental variances such that

(4)

Under these assumptions, C is the ratio of the variance contributed by common 

environmental variance to total variance and E is the ratio of the variance due to unique 

environmental effects and measurement error to total variance, following the ACE model of 

heritability.17 The actual computed linear variance may be different from these estimates 

due to the non-independence of related individuals and reduced degrees of freedom. The 

SOLAR model is given X, y, γ, and Φ, and calculates estimates of β, A, and C.

3 Methods

We evaluated SOLAR’s ability to accurately estimate the heritability of a trait in simulated 

data under one of the three distinct familial structures: (1) twin pairs consisting of equal 

numbers of DZ and MZ twin sets, (2) nuclear families consisting of two siblings and their 

mother and father (quartets), and (3) grandnuclear families consisting of two siblings and 

their mother, father, maternal grandparents, and paternal grandparents (octets). For each 

family structure, pedigrees and phenotypes were simulated in R (http://www.r-project.org/) 

following simulation structures previously published.18

For the simulated twin pedigrees, 2, 5, and 10 to 150 sets (in increments of 10) of two MZ 

and two DZ twins were modeled [resulting in 8, 20, and 40 to 600 subjects (in increments of 

40) total]. For the simulated nuclear family pedigrees, 2, 5, and 10 to 150 quartets (in 

increments of 10) were modeled [resulting in 8, 20, and 40 to 600 subjects (in increments of 
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40) total]. For the grandnuclear family pedigrees, to keep total number of subjects relatively 

similar across the family structures, and to avoid testing only one pedigree, 2, 3, and 5 to 75 

octets (in increments of 5) were simulated [resulting in 16, 24, and 40 to 600 subjects (in 

increments of 40) total].

Within each family structure and sample size to simulate quantitative phenotypes, A was 

swept between 0 and 0.95 in increments of 0.05 (20 levels), and values for C were iterated 

along 0, 0.3, 0.5, 0.7, only while 1 – C < A. Phenotypes were simulated at each combination 

of A and C 100 times (with 100 Monte Carlo iterations). Multivariate Gaussian noise was 

generated according to the heritability structure [Eq. (2)] solving for ε. A simulated 

covariate was randomly generated for each individual (X ~ U[1, 100]) and used as an 

additive factor in Eq. (1) with β = 0.005 to determine the simulated quantitative phenotype 

(y). The simulated data (y), the modeled covariate (X = [1:x]), the familial structure (Φ), and 

the common environment matrix (γ) were passed to SOLAR in phenotype and pedigree file 

formats. SOLAR estimated A and C for each of the Monte Carlo iterations for every family 

structure, heritability, and sample size combination using the “polygenic” command.

Bias for the estimates of A and C was calculated as the average estimate across the 100 

Monte Carlo simulations for a given combination of A and C minus true A and C modeled, 

respectively. Variance of the 100 estimates of A and C was calculated as well.

As an example of application in a post hoc analysis, we simulated white matter tract imaging 

phenotypes (average fractional anisotropy derived from diffusion tensor images) using 

actual heritability estimates from a large, multisite study14,15 across the three family 

structures with reasonable sample size (80 subjects) to showcase expected differences 

between the three family structures heritability estimates in imaging phenotypes. The same 

methods as described above were utilized, with A simulated across 14 regions of interest 

(ROI) (see Table 1 for each ROIs respective A simulated). C was simulated as 0 to keep in 

consistency with the published results.14,15 As above, 100 Monte Carlo simulations of 

phenotypes from each ROI were created and heritability was estimated for each simulation. 

Bias and variance of the estimates were calculated as well. The average ROI heritability 

estimates from each family structure were overlaid on the ENIGMA-DTI fractional 

anisotropy (FA) template and skeleton (www.enigma.ini.usc.edu/ongoing/dti-working-

group/) and visualized using MATLAB (http://www.mathworks.com/products/matlab/). The 

color scale reflects the heritability estimate, with warmer colors suggesting greater 

heritability.

4 Results

Where C = 0 (Fig. 1), heritability estimates produced by SOLAR had absolute biases of < 

~0.20 where sample size ~40 subjects or more; this bias was smaller for twin pair data. Twin 

pairs offered the lowest variance of all study designs. Nuclear and grandnuclear family 

studies showed higher variability, especially at low subject number. Across all three family 

structures, at heritabilities <20% with sample sizes < ~80 subjects, heritability was 

positively biased. Above 20%, heritability was negatively biased in all three study structures 
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with < ~80 subjects. Beyond heritabilities of 20% with sample sizes above 80 subjects, the 

three family structures’ biases were comparable.

For all simulated datasets where C > 0 in all three family structures, estimated heritability 

measures quickly approached those expected from the simulated data. Where C = 0.30, all 

three family structures’ estimates were positively biased at simulated heritabilities of <20%, 

and negatively biased at simulated heritabilities of greater than 20% when the sample size 

was <80 subjects (Figs. 2–4). Twin family structure estimates had slightly higher variance 

with <80 subjects (Figs. 2–4). Where C = 0.50 or 0.70, when the sample size was <80 

subjects, all three family structures’ estimates were still positively biased at simulated 

heritabilities of <20%. At these same sample sizes, the nuclear and grandnuclear structures 

were negatively biased at simulated heritabilities of greater than 20%, but twin family 

structures’ estimates remained positively, instead of negatively, biased. Estimates of 

heritability from twin data again had higher variance. Overall the biases were very low for 

all three family structures, and the variances were slightly higher in the twin structures than 

in the nuclear and grandnuclear structures.

For the example application simulating white matter imaging phenotypes, average 

heritability estimates and bias can be seen in Table 2. In general, with 80 subjects in any of 

the family structures, estimated heritability was biased by <10% for every ROI. For this 

simulation, nuclear family structures had slightly higher bias than grandnuclear and twin 

designs, which is expected based on Fig. 1 results at 80 subjects and heritabilities of around 

60% (Fig. 5).

5 Discussion

Prior to this study, the mathematical theory behind SOLAR has been derived and proven,16 

and SOLAR has been applied to large-scale neuroimaging data,14,15 but SOLAR has not 

been validated on a dataset with known heritability parameters that it could be compared 

against. We aimed to extend the theoretical validation of SOLAR to modeled data. With 

modeled data, true (modeled) heritability was known and we were able to compare SOLAR 

estimates of heritability to this true value, which was not possible in the previous studies 

using real data and is an advantage of using modeled data. We were also able to go beyond 

theoretical validation and apply this system to modeled data, which was modeled based on 

real imaging data results from prior studies. This analysis has bridged the gap between 

theoretical validation of mathematical equations and the use of these equations on real data 

by employing modeled data to validate the algorithms and heritability estimates derived 

from SOLAR. We were able to show that, in general, the estimates of heritability derived 

from SOLAR quickly approached the true heritability values across the three family 

structures as sample size increased, even at small heritabilities and across all values of 

common environmental contribution to variance. Therefore, when planning imaging 

genetics studies, imaging scientists can use the SOLAR package to estimate heritability of 

the imaging phenotype they are interested in, or can use SOLAR to prioritize which imaging 

phenotype to prioritize for future studies based on the size of the heritability estimate 

generated, and can use the results from this study to determine how accurate this estimate is 

based on the appropriate sample size and family design. For example, if a researcher had a 
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sample of 25 nuclear families and used SOLAR to estimate the heritability of the size of the 

medial temporal lobe to be ~50% with no common environmental contribution to variance 

(C = 0), this researcher could look at the results from this paper (Fig. 1 in this example) and 

see that the bias of this result from simulations was ~0 and variance was <0.10. From these 

conclusions, the researcher can be relatively confident in the estimate derived from SOLAR 

and could pursue an imaging genetics analysis or grant proposal.

Using the SOLAR heritability estimation package, we characterized heritability estimates by 

simulating imaging phenotypes across twin, nuclear, and grandnuclear family structures. We 

simulate these phenotypes across multiple sample sizes, heritabilities, and common 

environment variances in line with the ACE model of heritability. We investigated the bias 

and the variance of the estimated heritabilities across these family structures. Overall in this 

simulation, the estimated heritability values quickly approached the true heritability values 

as the number of subjects increased, even with small simulated heritabilities across all 

values of simulated common environmental contribution to variance (C), with comparable 

bias across the family structures and consistently lower variability in nuclear and 

grandnuclear family structures. We were also able to simulate imaging phenotypes with 

previously derived heritability values to showcase how different pedigree structures would 

result in different heritability estimates in an analysis of heritability of imaging phenotypes. 

In general, the estimates were relatively similar across the three family structures, but we 

were able to show how the expected differences between the three family structures 

heritability estimates would manifest themselves in imaging phenotypes.

These simulations provide a baseline for assessing estimator performance and study power. 

Under reasonable imaging assumptions of genetic variance, additive effects, common 

environmental effects, and individual variance or error, the presence or absence of genetic 

and common environment contribution to a given quantitative phenotype can be reasonably 

detected for small family-based studies of 40 to 80 individuals. Imaging studies of this size 

are being routinely undertaken. Thus, heritability analysis of imaging data is imminently 

feasible if familial sampling is performed.

The limitations of this study stem from the necessity to make assumptions when simulating 

data. We assumed complete pedigrees, which is perhaps not realistic for experimental 

datasets. We also assumed an additive genetic model and modeled common environmental 

covariance between only twins and siblings. In continuing work, we are seeking to improve 

and expand upon the statistical modeling approach utilized in this study so that we can more 

readily generalize across potential noise structures and incomplete pedigrees. We are 

interested in encapsulating these tools so that researchers can better model the impact of 

their sampling strategies and the propagation of these effects into heritability analysis, and 

ultimately, better answer the fundamental question of which traits are heritable and 

therefore, which should be prioritized in genetic analyzes. SOLAR provides an easy to use 

option for determining genetic and common environment effects in large pedigree structure 

designs.
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Fig. 1. 
Results from the simulation analysis with common environmental contribution to variance 

(C) of 0. The first row plots heritability estimates from the (a) twin, (b) nuclear, and (c) 

grandnuclear families of varying sample size (x-axis, subject number) across the modeled 

heritabilities (y-axis, heritability in percentage modeled). The color scale reflects the 

heritability estimate, with warmer colors suggesting greater heritability. The middle row 

plots biasin the heritability estimates from the (d) twin, (e) nuclear, and (f) grandnuclear 

families of varying sample size (x-axis, subject number) across the modeled heritabilities (y-

axis, heritability in percentage modeled). The color scale reflects the bias of the heritability 

estimate, with red or blue suggesting greater bias in the negative or positive direction, 

respectively. The bottom row plots variance in the heritability estimates from the (g) twin, 

(h) nuclear, and (i) grandnuclear families of varying sample size (x-axis, subject number) 

across the modeled heritabilities (y-axis, heritability in percentage modeled). The color scale 

reflects the bias of the heritability estimate, with red suggesting greater variance in the 

estimates.

Koran et al. Page 9

J Med Imaging (Bellingham). Author manuscript; available in PMC 2015 January 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Results from the simulation analysis with common environmental contribution to variance 

(C) of 0.30. The first row plots heritability estimates from the (a) twin, (b) nuclear, and (c) 

grandnuclear families of varying sample size (x-axis, subject number) across the modeled 

heritabilities (y-axis, heritability in percentage modeled). The color scale reflects the 

heritability estimate, with warmer colors suggesting greater heritability. The middle row 

plots bias in the heritability estimates from the (d) twin, (e) nuclear, and (f) grandnuclear 

families of varying sample size (x-axis, subject number) across the modeled heritabilities (y-

axis, heritability in percentage modeled). The color scale reflects the bias of the heritability 

estimate, with red or blue suggesting greater bias in the negative or positive direction, 

respectively. The bottom row plots variance in the heritability estimates from the (g) twin, 

(h) nuclear, and (i) grandnuclear families of varying sample size (x-axis, subject number) 

across the modeled heritabilities (y-axis, heritability in percentage modeled). The color scale 

reflects the bias of the heritability estimate, with red suggesting greater variance in the 

estimates.
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Fig. 3. 
Results from the simulation analysis with common environmental contribution to variance 

(C) of 0.50. The first row plots heritability estimates from the (a) twin, (b) nuclear, and (c) 

grandnuclear families of varying sample size (x-axis, subject number) across the modeled 

heritabilities (y-axis, heritability in percentage modeled). The color scale reflects the 

heritability estimate, with warmer colors suggesting greater heritability. The middle row 

plots bias in the heritability estimates from the (d) twin, (e) nuclear, and (f) grandnuclear 

families of varying sample size (x-axis, subject number) across the modeled heritabilities (y-

axis, heritability in percentage modeled). The color scale reflects the bias of the heritability 

estimate, with red or blue suggesting greater bias in the negative or positive direction, 

respectively. The bottom row plots variance in the heritability estimates from the (g) twin, 

(h) nuclear, and (i) grandnuclear families of varying sample size (x-axis, subject number) 

across the modeled heritabilities (y-axis, heritability in percentage modeled). The color scale 

reflects the bias of the heritability estimate, with red suggesting greater variance in the 

estimates.
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Fig. 4. 
Results from the simulation analysis with common environmental contribution to variance 

(C) of 0.70. The first row plots heritability estimates from the twin (a), nuclear (b), and 

grandnuclear (c) families of varying sample size (x-axis, subject number) across the modeled 

heritabilities (y-axis, heritability in percentage modeled). The color scale reflects the 

heritability estimate, with warmer colors suggesting greater heritability. The middle row 

plots bias in the heritability estimates from the twin (d), nuclear (e), and grandnuclear (f) 

families of varying sample size (x-axis, subject number) across the modeled heritabilities (y-

axis, heritability in percentage modeled). The color scale reflects the bias of the heritability 
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estimate, with red or blue suggesting greater bias in the negative or positive direction, 

respectively. The bottom row plots variance in the heritability estimates from the twin (g), 

nuclear (h), and grandnuclear (i) families of varying sample size (x-axis, subject number) 

across the modeled heritabilities (y-axis, heritability in percentage modeled). The color scale 

reflects the bias of the heritability estimate, with red suggesting greater variance in the 

estimates.
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Fig. 5. 
Results from the application analysis. Heritability estimates from the twin, nuclear, and 

grandnuclear families of 80 subjects overlayed on the ENIGMA-DTI fractional anisotropy 

template and skeleton. The color scale reflects the heritability estimate, with warmer colors 

suggesting greater heritability. The ground truth heritabilities were derived from the 

previous literature.14,15
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Koran et al. Page 15

Table 1

Regions of interest and the heritability modeled for the application analysis. Heritabilities were derived from 

the previous literature.14,15

Region of interest Heritability modeled

Body of corpus callosum 0.6935

Cingulum (cingulate gyrus)—L and R combined 0.6344

Corona radiata—L and R anterior and posterior sections combined 0.7475

Corticospinal tract 0.4241

External capsule—L and R combined 0.7539

Fornix 0.5605

Genu of the corpus callosum 0.6575

Internal capsule—L and R anterior limb, posterior limb, and retrolenticular parts combined 0.7092

Inferior fronto-occipital fasciculus—L and R combined 0.7323

Posterior thalamic radiation—L and R combined 0.6944

Splenium of corpus callosum 0.6203

Superior fronto-occipital fasciculus 0.6373

Superior longitudinal fasciculus 0.7685

Sagittal stratum (include inferior longitudinal fasciculus and inferior fronto-occipital fasciculus)—L and R combined 0.6461
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