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 Heritability estimation has become an important tool for imaging genetics studies. The large number of voxel-

and vertex-wise measurements in imaging genetics studies presents a challenge both in terms of computational
intensity and the need to account for elevated false positive risk because of themultiple testing problem. There is
a gap in existing tools, as standard neuroimaging software cannot estimate heritability, and yet standard quanti-
tative genetics tools cannot provide essential neuroimaging inferences, like family-wise error corrected voxel-
wise or cluster-wise P-values. Moreover, available heritability tools rely on P-values that can be inaccurate
with usual parametric inference methods.
In this work we develop fast estimation and inference procedures for voxel-wise heritability, drawing on recent
methodological results that simplify heritability likelihood computations (Blangero et al., 2013). We review the
family of score and Wald tests and propose novel inference methods based on explained sum of squares of an
auxiliary linear model. To address problems with inaccuracies with the standard results used to find P-values,
we propose four different permutation schemes to allow semi-parametric inference (parametric likelihood-
based estimation, non-parametric sampling distribution). In total, we evaluate 5 different significance tests for
heritability, with either asymptotic parametric or permutation-based P-value computations. We identify a num-
ber of tests that are both computationally efficient and powerful, making them ideal candidates for heritability
studies in the massive data setting. We illustrate our method on fractional anisotropy measures in 859 subjects
from the Genetics of Brain Structure study.

© 2015 Published by Elsevier Inc.
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Combining neuroimaging data with genetic analyses is an increas-
ingly active area of research aimed at improving our understanding of
the genetic and environmental control over brain structure and function
in health and illness (see, e.g., Glahn et al., 2007). The foundation of any
genetic analysis is establishing that a trait is heritable, that is, that a sub-
stantial fraction of its variability can be explained by genetic factors. Sig-
nificant and reproducible heritability has been established for many
neuroimaging traits assessing brain structure and function, including,
for instance, location and strength of task-related brain activation
(Blokland et al., 2008; Koten et al., 2009; Matthews et al., 2007; Polk
et al., 2007), white matter integrity (Kochunov et al., 2014; Jahanshad
67

68
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70
s).

ast and powerful heritability
.03.005
et al., 2013; Brouwer et al., 2010; Chiang et al., 2009, 2011; Kochunov
et al., 2010), cortical and subcortical volumes, cortical thickness and
density (Winkler et al., 2010; Rimol et al., 2010; Kochunov et al.,
2011a, b; Kremen et al., 2010; den Braber et al., 2013).

Variance component models are the best-practice approach for
deriving heritability estimates based on familial data (Almasy and
Blangero, 1998; Blangero and Almasy, 1997; Amos, 1994; Hopper and
Mathews, 1982), for allowing great flexibility inmodeling of genetic ad-
ditive and dominance effects, as well as common and unique environ-
mental influences. The model also allows the inclusion of additional
terms that allow linkage analysis, yet remaining relatively simple and
requiring the estimation of only a few parameters. Estimation of param-
eters typically uses maximum likelihood under the assumption that the
additive error follows a multivariate normal distribution. The iterative
optimization of the likelihood function requires computationally inten-
sive procedures, that are prone to convergence failures, something par-
ticularly problematic when fitting data at every voxel/element.
inference for family-based neuroimaging studies, NeuroImage (2015),
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Typically a likelihood ratio test (LRT) is used for heritability hypoth-
esis testing. As the null hypothesis value is on the boundary of the
parameter space, the asymptotic distribution of LRT is notχ2 with 1 de-
gree of freedom (DF), but rather approximately as a 50:50mixture ofχ2

distributions with 1 and 0 DF, where a 0 DF χ2 is a point mass at 0
(Chernoff, 1954; Self and Liang, 1987; Stram and Lee, 1994;
Dominicus et al., 2006; Verbeke and Molenberghs, 2003). However,
this result depends on the assumption of independent and identically
distributed (i.i.d.) data (Crainiceanu, 2008; Crainiceanu and Ruppert,
2004a, b, c), which is violated in the heritability problem. It has been
shown that 0 values occur at a rate greater than 50%, producing conser-
vative inferences (Blangero et al., 2013; Crainiceanu and Ruppert,
2004a; Shephard, 1993; Shephard and Harvey, 1990).

As with most statistical models, the quantitative genetic models
used here are based on an assumption of multivariate Gaussianity, and
this assumption is the basis of the estimation and test procedures de-
scribed above. However, the heritability test statistic's null distribution
may be inaccurate even when Gaussianity is perfectly satisfied, due
to the limitations of the 50:50χ2 result justmentioned. Further, for neu-
roimaging spatial statistics, like family-wise error (FWE) corrected in-
ference with either voxel- or cluster-wise inference, the relevant
parametric null distributions are intractable.While random field theory
(Worsley et al., 1992; Friston et al., 1994; Nichols and Hayasaka, 2003)
results exist for χ2 images (Cao, 1999), they are not directly applicable
here as the test statistic image cannot be expressed as a linear combina-
tion of component error fields.

Hence, there is a compelling need for alternative inference proce-
dures that make fewer assumptions. Permutation tests are a type of
nonparametric test that can provide exact control — or approximately
exact when there are nuisance variables — over false positive rates.
These tests depend only on minimal assumptions, namely, that under
the null hypothesis the data is exchangeable, that is, that the joint distri-
bution of the data remains unaltered after permutation (Nichols and
Holmes, 2002; Winkler et al., 2014).

There is relatively little work on permutation tests for variance com-
ponent inference. The typical application of variance components
models is not in quantitative genetics, but in hierarchical linear models
where observational units are nested in clusters, such repeated mea-
sures designs. Of the few permutationmethods proposed in this setting,
they all permute the residuals (after removing the covariate effects) be-
tween andwithin clusterswhile fixing themodel structure.While these
procedures use different test statistics, e.g. Fitzmaurice and Lipsitz
(2007) used the LRT as the statistic, while Lee and Braun (2012) used
the sample variance of estimated random effect, they generally require
iterative optimization of the likelihood function, and thus as permuta-
tion procedures they are yet more computationally demanding.

Samuh et al. (2012) presented a fast permutation test, though it is
only applicable to the random intercept model. And recently
Drikvandi et al. (2013) introduced a fast permutation test based on
the variance least square estimator, which in essence fits a regression
model to squared residuals. However, this approach is not based on
maximum likelihood, and is only intended for a standard repeatedmea-
sures model, where independent subjects are recorded multiple times,
not multiple dependent subjects as in a pedigree study.

Our group presented a method to accelerate maximum likelihood
estimation by applying an orthonormal data transformation that diago-
nalizes the phenotypic covariance, transforming a correlated heritability
model into an independent but heterogeneous variance model
(Blangero et al., 2013). However, this advance doesn't eliminate itera-
tive optimization nor possible convergence problems.

In the present work, we expanded upon this work to derive approx-
imate, non-iterative estimates and test statistics based on the first iter-
ation of Newton's method. These procedures can be constructed with
an auxiliarymodel based on regressing squared residuals on the kinship
matrix eigenvalues. Then the Wald and score hypothesis tests can then
be seen as generalized and ordinary explained sum of squares of the
Please cite this article as: Ganjgahi, H., et al., Fast and powerful heritability
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auxiliarymodel. In addition, as the null hypothesis of no heritability cor-
responds to homogeneous variance of the transformed phenotype, we
draw from the statistical literature on tests of heteroscedasticity for a
new and completely different test for heritability detection.We develop
permutation test procedures for each of these methods, thus providing
FWE-corrected voxel- and cluster-wise inferences.

The remainder of this paper is organized as follows. In the next sec-
tion we detail the statistical model used and describe each of our pro-
posed methods. The simulation framework used to evaluate the
methods, and the real data analysis used for illustration are described
in the Evaluation section. We then present and interpret results, and
offer concluding remarks.

Theory

In this section we detail the statistical models used, introduce our
fast heritability estimators and tests, and then propose several permuta-
tion strategies for these tests.

Original and eigensimplified polygenic models

At each voxel/element, a polygenic model for the phenotype Ymea-
sured on N individuals can be written as

Y ¼ Xβ þ g þ ϵ ð1Þ

where X is anN× pmatrix consisting of an intercept and covariates, like
age and sex; β is the p-vector of regression coefficients; g is theN-vector
of latent (unobserved) additive genetic effect; and ϵ is the N-vector of
residual errors. In this study we consider the most common variance
components model, with only additive and unique environmental
components.

The trait covariance, Var(Y) = Var(g + ϵ) = Σ can be written as

Σ ¼ 2σ2
AΦþ σ2

EI; ð2Þ

where Φ is the kinship matrix; σA
2 and σE

2 are the additive genetic and
the environmental variance components, respectively; and I is the iden-
tity matrix. The kinship matrix is comprised of kinship coefficients, half
the expectedproportion of geneticmaterial shared between each pair of
individuals (Lange, 2003).

The narrow sense heritability is

h2 ¼ σ2
A

σ2
A þ σ2

E

: ð3Þ

Maximum likelihood is used for parameter estimation with the as-
sumption that the data follows a multivariate normal distribution. The
log likelihood for the untransformed model (Eqs. (1) & (2)) is

‘ β;Σ;Y ;Xð Þ ¼ −1
2
Nlog 2πð Þ−1

2
log Σj jð Þ−1

2
Y−Xβð Þ0Σ−1 Y−Xβð Þ: ð4Þ

For large datasets with arbitrary family structure, the computational
burden of evaluating of the likelihood can be substantial. In particular, a
quadratic form of the inverse covariance,Σ−1, must be computed, along
with the determinant of Σ. We take the approach of Blangero et al.
(2013), who proposed an orthogonal transformation based on the ei-
genvectors of the kinship matrix, thus diagonalizing the covariance
and simplifying the computation of the likelihood (Eq. (4)).

The eigensimplified polygenic model is obtained by transforming
the data and model with a matrix S, the matrix of eigenvectors of Φ
which are the same as the eigenvectors ofΣ, Eq. (2). Applying this trans-
formation to Eq. (1) gives the transformed model

S0Y ¼ S0Xβ þ S0g þ S0ε
inference for family-based neuroimaging studies, NeuroImage (2015),
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which we write as

Y� ¼ X�β þ ε�; ð5Þ

where Y* is the transformed data, X* are the transformed covariates and
ε* is the transformed random component, where ε* now encompasses
both the genetic and non-genetic random variations. The diagonalizing
property of the eigenvectors then gives a simplified form for the
variance:

Var ε�
� � ¼ Σ� ¼ σ2

ADg þ σ2
EI; ð6Þ

where Σ* is the variance of the transformed data andDg=diag{λgi} is a
diagonal matrix of the eigenvalues of 2Φ.

The log likelihood takes on the exact same form as Eq. (4) for Y*, X*,β
and Σ*, except is much easier to work with since Σ* is diagonal:

‘ β�
;σ �

A;σ
�
E;Y

�
;X�� � ¼ −1

2
Nlog 2πð Þ−1

2

XN
i¼1

log σ2
Aλgi þ σ2

E

� �
−1

2

XN
i¼1

ε�i
2

σ2
Aλgi þ σ2

E
:

Note that, while S′ can be seen as a semi-whitening step, the trans-
formed model can also be seen as a change of variables, where the
variance is reparametrized asΣ= SΣ*S′. As a reparametrization, the in-
variance property of maximum likelihood guarantees that the same
values of β, σA

2 and σE
2 will optimize both the original and transformed

likelihoods.
Use of this transformation has twomajor benefits. First, optimization

time is substantially reduced, as the inverse and determinant of the
transformed covariance are now trivial. Second, applying standard sta-
tistical inference procedures, including the score and the Wald test, to
the eigensimplified polygenic model produces simple algebraic forms
that can be harnessed for fast approximations. Both of these speed im-
provements facilitate the use of permutation tests that avoid asymptotic
approximations.

Heritability estimation and test statistics

We segregate the transformed model parameters into fixed β and
random θ = (σA

2, σE
2) terms, and estimate them by maximizing the like-

lihood function via iterative numerical methods. Here, we consider
Newton's method because it leads to computationally efficient heritabil-
ity estimators and associated tests. Newton's method requires the score
and expected information matrix of the transformed model, which are

S β; θð Þ ¼
X�′Σ�−1ε�

−1
2

U′Σ�−11−U′Σ�−2ε�2
h i264

375 ð7Þ

and

I β; θð Þ ¼
X�′Σ�−1X� 0

0
1
2
U′Σ�−2U

264
375; ð8Þ

respectively, where U = [1, λg] is a N × 2 matrix, 1 is a N × 1 vector
of ones and λg = {λgi} is a N × 1 vector of kinship matrix eigenvalues.

It is useful to write f* for the vector with elements f �i ¼ ε̂�2i , where ε̂� ¼
Y�−X�β̂ are the transformed model residuals. Newton's method gives

update equations for β̂ and θ̂ at iteration j + 1 as:

β̂ jþ1 ¼ X�′ Σ̂
�
j

� �−1
X�

� �−1
X�′ Σ̂

�
j

� �−1
Y� ð9Þ
Please cite this article as: Ganjgahi, H., et al., Fast and powerful heritability
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θ̂ jþ1 ¼ max 0; U0 Σ̂
�2
j

� �−1
U

� �−1
U0 Σ̂

�2
j

� �−1
f �j

� 	
; ð10Þ

where j indexes iteration; the variance parameters θ must be positive,
hence the maximum operator. When these updates are iterated until
convergence as usual, we denote the estimates with a ML subscript, e.g.

β̂ML, θ̂ML and ĥ
2
ML ¼ σ̂2

A;ML = σ̂2
A;ML þ σ̂2

E;ML

� �
.

To allow for potential improvements on speed, we also consider a
one-step estimator. First, observe that since Σ* is diagonal, Eq. (9) is
the Weighted Least Squares (WLS) regression of Y* on X*, and Eq. (10)
is based on theWLS regression of f* onU. This immediately suggests ini-
tial values based on Ordinary Least Squares (OLS),

β̂OLS ¼ X�′X�� �−1
X�′Y�

θ̂OLS ¼ max 0; U′U
� �−1

U′ f �OLS

� 	
; ð11Þ

where fOLS⁎ is the square of the OLS residuals

ε̂OLS ¼ Y�−X�β̂OLS; ð12Þ

while not recommended as a final estimate, it also produces ĥ
2
OLS ¼

σ̂2
A;OLS= σ̂2

A;OLS þ σ̂2
E;OLS

� �
. Finally, our proposed one-step estimators are:

β̂WLS ¼ X�′ Σ̂
�
OLS

� �−1
X�

� �−1
X�′ Σ̂

�
OLS

� �−1
Y�

θ̂WLS ¼ max 0; U0 Σ̂
�2
OLS

� �−1
U

� �−1
U0 Σ̂

�2
OLS

� �−1
f �OLS

� 	
; ð13Þ

where Σ̂
�
OLS is formed by θ̂OLS ¼ σ2

A;OLS;σ
2
E;OLS

� �
, also producing ĥ

2
WLS ¼

σ̂2
A;WLS= σ̂2

A;WLS þ σ̂2
E;WLS

� �
.

Amemiya (1977) showed that such one-step maximum likelihood
estimators are asymptotically normal and consistent. Going forward,
wewill use “ML” to refer to themaximum-likelihood, iterated estimator
and “WLS” to refer to this one-step estimator.

Test statistics

In this section we describe likelihood ratio tests (LRTs), Wald tests,
and score test for hypothesis tests of nonzero heritability; we also add
an additional test based on detecting heterogeneous variance structure
to detect heritability. We only consider the transformed model, and
tests onH0 :σA

2 =0 vs.H1 :σA
2 N 0, equivalent to inference for heritability

(Eq. (3)). Table 1 organizes the models and test statistics we consider.

Likelihood ratio test
The LRT (Neyman and Pearson, 1933) statistic is twice the difference

of the log-likelihoods, unrestricted minus H0-restricted. For ML this
requires optimizing the likelihood function twice, once under the null
H0 : σA

2 = 0, and once under the alternative (though the null model
is trivial, equivalent to OLS). We denote the test statistic for this test
TL,ML. In addition, LRT can be constructed for the transformed model in
terms of the one-step WLS estimator; we denote this statistic as TL,WLS.

Wald test
TheWald test consists of a quadratic form of the parameter estimate

minus its null value, and its inverse asymptotic variance (i.e. expected
Fisher's information matrix). Both the estimate and its variance are
computed under the full, alternative model.
inference for family-based neuroimaging studies, NeuroImage (2015),
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t1:2 Comparison of model and test statistic properties. Usual P-values and CI's (confidence Intervals) refer to the best practice inference tools used with maximum likelihood estimation.

t1:3 Model name Model expression Estimation method Test statistics

t1:4 LRT WALD Score GQ

t1:5 Original Y = Xβ + g + ε ML (usual P-values) (usual CI's)
t1:6 Transformed Y⁎ = X⁎β + ε⁎ WLS, “1 Step” TL,WLS TW,WLS TS
t1:7 ML, fully converged TL,ML TW,ML

t1:8 Transformed, split YA⁎ = XA
⁎βA + εA⁎ OLS, “0 Step” TGQ

t1:9 YB⁎ = XB
⁎βB + εB⁎

4 H. Ganjgahi et al. / NeuroImage xxx (2015) xxx–xxx
U
N
C
O

R
R
E
C

The Wald test for the ML estimator (Rao, 2008) is

TW;ML ¼
1
2

σ̂2
A;ML

� �2
C U0Σ̂

�−2
ML U

� �−1
C0


 �−1

¼ 1
2

N− 10Σ̂
�−1
ML 1

� �2
10Σ̂

�−2
ML 1

� �−1
� �

where C=[0 1] is a contrast row vector, and the latter is a simpler form
found in Buse (1984). Iterative optimization is required for TW,ML,
though it can considerably be more amenable to compute than LRT be-
cause the likelihood function is optimized only once.

The Wald test for our one-step WLS estimator can be written as

TW;WLS ¼
1
2

σ̂2
A;WLS

� �2
C U0Σ̂

�−2
WLSU

� �−1
C0


 �−1

¼ 1
2

σ̂2
A;WLS

� �2
� Σ̂

�−1
OLS λg

� �0
I−Σ̂

�−1
OLS 1 Σ̂

�−1
OLS 1

� �0
Σ̂
�−1
OLS 1

� �� �−1
10Σ̂�−1

OLS

� �
Σ̂
�−1
OLS λg :

where the second line shows the computation to be half the generalized
explained sum of squares (Buse, 1973, 1979) of an auxiliary model, the
weighted least squares regression of fOLS⁎ on λg, with weights deter-

mined by Σ̂
�
OLS.

Score test
The score test (Rao, 2008), also known as the Lagrange multiplier

test, is a quadratic form of the score (the gradient of the log likelihood)
and the expected Fisher's information, each evaluated under the null
hypothesis. Among the tests that we consider, the score test is the
least computationally demanding procedure, as it only requires estima-
tion of the null model. For H0 : σA

2 = 0, the score test with the trans-
formed likelihood function is:

TS ¼
λg0Σ

�−2
OLS f �OLS−λg0Σ

�−1
OLS 1

CU0Σ�−2
OLS UC

0

¼ 1
2

σ̂2
A;OLS

σ̂2
OLS

 !2

λg0 I−101
N

� �
λg ;

where σ̂2
OLS ¼ ε̂OLSð Þ0ε̂OLS=N is the OLS naive residual variance estima-

tor. Similar to the Wald test, TS can be obtained as half the regression
sum of squares of an auxiliary model, the (unweighted) regression of

f �=σ̂2
A;OLS on λg. As it only involves the fitted null model, it isn't associat-

ed with a WLS or ML estimate.
We note that Wald and score tests for a null hypothesis value

lying on the boundary of parameter space can take a special form
(Freedman, 2007; Molenberghs and Verbeke, 2007; Morgan et al.,
2007; Verbeke and Molenberghs, 2007; Silvapulle, 1992; Silvapulle
and Silvapulle, 1995; Verbeke and Molenberghs, 2003). However, for
our model (Eq. (1)), the standard version is appropriate if the score
Please cite this article as: Ganjgahi, H., et al., Fast and powerful heritability
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function is positive at the boundary value and otherwise set to zero.
As any negative score values are suppressed by our non-negative

constrained estimates θ̂OLS (Eq. (11)) and θ̂WLS (Eq. (13)), our tests are
implicitly zero when needed, and thus the appropriate Wald and score
tests are as given above.

All three of the LRT, Wald, and score test procedures are asymptoti-
cally equivalent but have different small-sample performance, which
we evaluate below. These tests are considered to follow asymptotically
a 50 : 50mixture ofχ2 distributionswith 1 and 0DF,where 0 aDFχ2 is a
point mass at 0 (Chernoff, 1954; Self and Liang, 1987; Stram and Lee,
1994; Dominicus et al., 2006; Verbeke and Molenberghs, 2003), al-
though it has been shown that 0 values can occurwith a higher frequen-
cy, and the standard 50:50 result will tend to produce conservative
inferences (Blangero et al., 2013; Crainiceanu and Ruppert, 2004a;
Shephard, 1993; Shephard and Harvey, 1990).

Goldfeld and Quandt (GQ) test
Instead of standard likelihood theory, an alternative approach

to heritability hypothesis testing can be derived from tests of
heteroscedasticity. This follows for the transformed model, since the
null hypothesis of no heritability corresponds to homoscedasticity of
the transformed phenotype variance (Var(ε*) = σ2I). Thus, rejection
of the hypothesis of homoscedasticity implies a rejection of the hypoth-
esis of zero heritability. One class of such tests requires an explicit, hy-
pothesized form for the heterogeneous variance. Another type called
“nonconstructive” does not require such explicit models; one example
is the Goldfeld and Quandt (1965) (GQ) test, which we propose as a
test for non-zero heritability.

The GQ test partitions observations into 2 groups, A & B, based on a
variable that should explain any heterogeneous variance. The test statis-
tic then compares the ratio of OLS residual mean squares:

TGQ ¼ ε̂�0A ε̂
�
A= nA−1ð Þ

ε̂�0B ε̂
�
B= nB−1ð Þ ð14Þ

where subscript A refers to the high variance group, subscript B to low
variance group, ε̂�A refers to the residuals from regressing elements of
Y* in group A on corresponding rows of X*, and likewise for ε̂�B, finally,
nA and nB are the number of observations in each respective group.
With Gaussian errors and under a null hypothesis of homoscedasticity,
TGQ follows a F-distribution with degrees of freedom ν1 = nB − p and
ν2 = nA − p, where p is the number of columns in X*.

For the transformed data Y*, the kinship eigenvalues order the vari-
ance of the observations when σA

2 N 0. Thus we propose to define the
two groups based on λgi N 1 and λgi ≤ 1, where we make use of the
fact ∑iλgi/N = trace(2Φ)/N = 1.

This test is only able to detect non-zero heritability and cannot pro-
duce estimates of h2. On the other hand, the parametric null distribution
of (Eq. (14)) does not depend on the mixture approximation and large
sample properties, and its implementation is straightforward. To our
knowledge, this is the first proposed use of a heteroscedasticity test to
create an exact (non-asymptotic), non-iterative test of heritability.
inference for family-based neuroimaging studies, NeuroImage (2015),
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t2:1Table 2
t2:2Comparison of tests for heritability inference.

t2:3Tests h2 estimates Distribution Type Optimization Permutation

t2:4TL,ML 50:50 χ1
2 and 0 Asymptotic ML P1, P2, P3, P4

t2:5TW,ML 50:50 χ1
2 and 0 Asymptotic ML P1, P2, P3, P4

t2:6TW,WLS 50:50 χ1
2 and 0 Asymptotic WLS P1, P2, P3, P4

t2:7TS 50:50 χ1
2 and 0 Asymptotic OLS P1, P2, P3, P4

t2:8TGQ Fn2−p;n1−p Exact OLS P1, P2, P3, P4

t2:9Proposed test procedures: The score test (TS), the Wald test and its variants in terms of
t2:10WLS estimators (TW,WLS) and ML estimators (TW,ML), and the LRTs in terms of the trans-
t2:11formed model (TL,ML). ML optimization denotes iterative optimization until convergence;
t2:12WLS a 1-step of Newton's method; and OLS an estimate based on (unweighted) least

squares.
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Permutation test for heritability inference

Permutation methods can be used to construct the null sampling
distribution which can be used to produce P-values and thresholds.
For the model with only additive genetic and environmental variance
components, the null hypothesis of no heritability implies fully inde-
pendent data. Thus, if there were no nuisance variables (X), a permuta-
tion test could be conducted by freely permuting the data (Y). With
covariates, we must permute suitable residuals, as detailed below.

To conduct inference on σA
2 in the presence of the nuisance parame-

ters β and σE
2, we draw inspiration from various methods for permuta-

tion methods for the GLM (Winkler et al., 2014). For example, there
are several different permutation schemes when testing a strict subset
of all GLM regression parameters. One approach is to permute only
the column of interest in the design matrix. This approach, due to
Draper and Stoneman (1966) could be restated as isolating the portion
of the model affected by the null hypothesis, and then only permuting
that portion. This is the motivation for our first permutation strategy
(P1), wherewe repeatedly fit themodel, but randomly permute kinship
each time.

Another approach is to use the reduced, null hypothesis model to
generate residuals, permute these residuals, and use them as surrogate
null data to be re-analyzed (Freedman and Lane, 1983). For the GLM,
this is the recommended approach (Winkler et al., 2014), and corre-
sponds to an ideal test where nuisance effects are removed from the
data, leaving what should be only unstructured data (under the null)
ready to be permuted. This is the motivation for permutation scheme
(P2).

Finally, another approach to GLM permutation testing is to use the
full, alternative hypothesis model to generate residuals, and then use
these residuals as surrogate null data to be re-fit (ter Braak, 1992).
This approach has the merit of removing all systematic variation from
the data before permutation. This is the motivation for our third and
fourth strategies (P3 & P4).

Partial model permutation (P1)
We implement approach P1 by permuting just the aspect of the

model tested by the H0. For the untransformed model this corresponds
to permuting the model's covariance term to be

2σ2
APΦP0 þ σ2

EI;

where P is one ofN ! possibleN×N permutationmatrices. For the trans-
formed model, the permutated covariance takes the form

σ2
APDgP

0 þ σ2
EI:

Null model residual permutation (P2)
For P2we generate residuals underH0 :σA

2=0, i.e. OLS residuals ε̂OLS
(Eq. (12)). Then we permute these residuals, and add-back nuisance
(fixed) effects to generate new H0 realizations Ỹ*:

eY� ¼ X�β̂OLS þ Pε̂�OLS; ð15Þ

where the tilde (~) accent denotes one of many realizations, which in
turn are fit with the model under consideration.

Full model residual permutation (P3)
For P3, we start with full model residuals, i.e. either ε̂ML or ε̂WLS, de-

pending on the estimator used. Then we permute these residuals, and
add-back nuisance to generate new null hypothesis realizations;
e.g., for WLS:

eY� ¼ X�β̂WLS þ Pε̂�WLS: ð16Þ
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and analogously for ML. Again, each realization Ỹ is fit to the current
model.

Full model whitened residual permutation (P4)
P4 is like P3, but we go a step further and create residuals that are

whitened before permutation. For example, for WLS:

eY� ¼ P Σ̂
�−1=2

ε̂�WLS

� �
; ð17Þ

and analogously for ML. Again, each realization is fit to the current
model.

In total we have introduced five different test procedures and four
permutation strategies, summarized in Table 2.

Multiple testing correction
Whether inference is conducted voxel-wise or cluster-wise, the use

of use of an uncorrected α = 5 % level leads to an excess of false posi-
tives. False discovery rate correction, controlling the expected propor-
tion of false positives among all detections, is easily applied based on
uncorrected P-values alone (Genovese et al., 2002). As uncorrected per-
mutation cluster-wise P-values require an assumption of stationarity
(though see Salimi-Khorshidi et al. (2010)), FDR is generally only ap-
pliedwith voxel-wise P-values. Familywise error rate (FWE) correction,
controlling the chance of one or more false positives across the whole
set (family) of tests (Nichols and Hayasaka, 2003) requires the distribu-
tion of themaximum statistic, easily computed for either voxels or clus-
ter size with permutation (Nichols and Holmes, 2002).

Evaluation

Simulation studies

We conduct various simulation studies to evaluate proposed
methods for heritability inference on the transformed model. The first
study considers estimator bias and variance for the different methods.
The second studymeasures the accuracy of parametric and permutation
inference methods. Finally, the third study evaluates FWE control in an
image-wise setting for voxel and cluster-wise inferences.

In all simulations, the response variable is assumed to be Y= Xβ+ ε
where ε follows N(0, Σ), Σ = h2(2Φ) + (1− h2)I. The design matrix X
consists of an intercept, a linear trend vector X1 and a quadratic vector
X2 between 1 and −1, with β = [0, 0, 10]. Kinship structure Φ is
based on real pedigrees (each described below), and the simulations
considered a range of true heritabilities (h2 = 0, 0.2, 0.4, 0.6, 0.8).

Simulation 1
This simulation evaluates the bias, standard deviation and mean

squared error (MSE) of the heritability estimators (ML and WLS).
The pedigrees and sample sizes used are shown in Table 3;we usedped-
igrees from the 10th Genetics AnalysisWorkshop (GAW10) (Mac-Cluer
inference for family-based neuroimaging studies, NeuroImage (2015),
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t4:1Table 4
t4:2Simulation 2 result, comparing parametric rejection rates (percent), 5% nominal. For
t4:3GAW10 data with 2 families, 138 subjects, 10,000 realizations. GQ test has the most accu-
t4:4rate false positive rate, LRTwith ML (TL,ML) is themost powerful; both GQ (TGQ) and score
t4:5(TS) test have good power (95% MC CI for 0.05, i.e. for the null case is (4.57%, 5.42%)).

t4:6Test True effect (h2)

t4:70 0.2 0.4 0.6 0.8

t4:8TS 3.76 40.66 76.76 94.32 98.94
t4:9TW,WLS 1.56 26.94 73.46 95.62 99.64
t4:10TW,ML 2.50 33.00 77.74 94.84 97.54
t4:11TL,ML 3.16 42.28 81.80 96.40 98.90
t4:12TGQ 4.36 35.60 78.22 96.50 99.70

t3:1 Table 3
t3:2 Datasets used in simulation 1.

t3:3 Datasets Number of pedigrees Sample size

t3:4 GAW10 2 138
t3:5 GAW10 9 626
t3:6 GOBS 73 858
t3:7 GAW10 23 1497
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et al., 1997) and from the GOBS dataset (described below). Univariate
data Y was simulated as per the Gaussian model described above, and
10,000 realizations were used.

Simulation 2
This simulation assesses the false positive rates for each method, on

the basis of both parametric and permutationmethods. For this analysis
we used 2 pedigrees from the GAW10 dataset with 138 subjects; the
small sample size was used to ‘stress test’ the methods. Univariate
data Y was simulated as per the Gaussian model described above,
10,000 realizations were used, and 500 permutations for each nonpara-
metric procedure. On the basis of Simulations 1 and 2, ‘winner’ tests and
a permutation strategy were chosen and fed into the 3rd simulation
study.

Simulation 3
Image simulations were conducted under the null hypothesis

(h2 = 0) on a 96 × 96 × 20 image that the response variable for each
voxel are simulated as described above, smoothedwith a Gaussian filter
with a Full Width at Half Maximum of 4 mm. To avoid edge effects,
larger images were simulated, smoothed and then truncated. For each
realization we collected empirical null distributions of maximum
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bias h2: ML vs WLS

Fig. 1. Simulation 1 results, comparingML andWLS behavior in terms ofmean estimate (top lef
left), andmean squared error (MSE; bottom right). See Table 3 for details of each pedigree; nS d
leading to quite similar MSE for large samples.
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statistic and maximum cluster size to compute FWE P-values; we con-
sidered different cluster forming thresholds (parametric uncorrected
P-value = 0.05, 0.01, 0.005, 0.001). We generated 5000 realizations
and used 500 permutations with each synthetic dataset.
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Application in diffusion tensor imaging data

We used data from the Genetics of Brain Structure and Function
Study (GOBS) (Olvera et al., 2011; McKay et al., 2014) to perform
voxel and cluster-wise FA heritability inference in healthy subjects.
The sample comprised 859 Mexican–American individuals from 73 ex-
tended pedigrees (average size 17.2 people, range = 1–247). The sam-
ple was 59 % female (351men/508women) and had amean age of 43.2
(SD = 15.0; range = 19–85). All participants provided written in-
formed consent on forms approved by the Institutional Review Boards
at theUniversity of TexasHealth Science Center SanAntonio (UTHSCSA)
and Yale University.
E

nS=138

nS=626

nS=858

nS=1497
0

0.05

0.1

0.15

0.2
sd h2: ML vs WLS
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nS=858

nS=1497
0

0.005
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0.015

0.02

0.025
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0.035
MSE h2: ML vs WLS

ML: H2=0
ML: H2=0.2
ML: H2=0.4
ML: H2=0.6
ML: H2=0.8
WLS: H2=0
WLS: H2=0.2
WLS: H2=0.4
WLS: H2=0.6
WLS: H2=0.8

t; true h2 varies on abscissawithin clusters), standard deviation (SD; top right), bias (lower
enotes number of subjects. WLS has worse bias thanML, but small in absolutemagnitude,
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Fig. 2. Simulation 2 results, false positive rates for heritability permutation inference, 5%
nominal. Based on GAW10 data with 2 families, 138 subjects, 10,000 realizations, and
500 permutations each realization. Monte Carlo confidence interval (MC CI) is (4.57%,
5.43%). Permutation schemes P2–P4 generally seem to work well, while TW,ML tends to
be conservative.
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Diffusion imaging was performed at the Research Imaging Center,
UTHSCSA, on a Siemens 3 T Trio scanner using a multi-channel phased
array head coil. A single-shot single refocusing spin-echo, echo-planar
imaging sequence was used to acquire diffusion-weighted data with a
spatial resolution of 1.7 × 1.7 × 3.0 mm. The sequence parameters
were: TE/TR=87/8000ms, FOV=200mm, 55 isotropically distributed
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Fig. 3. Simulation 2 results, power for heritability permutation inference. For GAW10 data with
Carlo confidence interval varies with true rejection rate; for 40% it is (39.0%, 41.0%), for 80% it
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diffusion weighted directions, two diffusion weighting values, b = 0
and 700 s/mm2 and three b = 0 (non-diffusion-weighted) images.

ENIGMA–DTI protocols for extraction of tract-wise average FA
values were used. These protocols are detailed elsewhere (Jahanshad
et al., 2013) and are available online http://enigma.ini.usc.edu/
protocols/dti-protocols/. Briefly, FA images from HCP subjects were
non-linearly registered to the ENIGMA–DTI target brain using FSL's
FNIRT (Jahanshad et al., 2013). This targetwas created as a “minimal de-
formation target” based on images from the participating studies as pre-
viously described (Jahanshad et al., 2013b). The data were then
processed using FSL's tract-based spatial statistics (TBSS; http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/TBSS) analytic method (Smith et al., 2006)
modified to project individual FA values on the hand-segmented ENIG-
MA–DTI skeleton mask. The protocol, target brain, ENIGMA–DTI skele-
ton mask, source code and executables, are all publicly available
(http://enigma.ini.usc.edu/ongoing/dti-working-group/). The FA values
are normalized across individuals by inverse Gaussian transform
(Servin and Stephens, 2007; Allison et al., 1999) to ensure normality as-
sumption. Finally, we analyzed the voxel and cluster-wise FA values
with applying along the ENIGMA skeleton mask. To validate our pro-
posed methods for heritability estimation and inference for imaging
data, we applied them on GOBS dataset.

Results

Univariate heritability simulation results

Simulation 1
Fig. 1 compares WLS and ML heritability estimators for various de-

signs and effect sizes, in terms of mean, standard deviation (SD) and
mean squared error (MSE), for 10,000 Monte Carlo realizations. Large
sample theory dictates that ML should provide best performance, and
indeed it has least bias and smallest standard deviation, but the (non-
Test Statisics, h2 =0.4

TS TL,ML TL,WLS TW,ML TW,WLS TGQ

R
ej

ec
tio

n 
R

at
es

0

20

40

60

80

100
Permutation Strategies Power Comparison

Test Statisics, h2 =0.8

TS TL,ML TL,WLS TW,ML TW,WLS TGQ

R
ej

ec
tio

n 
R

at
es

0

20

40

60

80

100
Permutation Strategies Power Comparison

P1
P2
P3
P4

2 families, 138 subjects, 10,000 realizations, and 500 permutations each realization.Monte
is (79.2%, 80.8%).
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Fig. 5. Simulation 3 results, − log10 PP plot for voxel-wise FWE permutation P-values
under the null hypothesis, for three of our proposed test statistics. Each FWE P-value is
for the maximum voxel-wise test statistic in each realized dataset. All three test statistics
produce valid P-values, though are bounded below by 1/500 (above by 2.70 in− log10P).
The Wald test's FWE it slightly conservative, and score a bit more so. Results based on
GAW10 data with 2 families, 138 subjects, 5000 realizations, 500 permutations each real-
ization, and 96 × 96 × 20 images with 4 mm FWHM smoothing.
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iterative)WLS hasMSEs that are only slightly larger. As expected, when
the sample size is increased WLS and ML heritability estimators reach
almost the same performance. While the WLS estimator bias is worse
(more negative) than that of ML, the absolute magnitude of bias is
small in large samples.

Simulation 2
This simulation assesses the accuracy of parametric null distribu-

tions, either a 50:50 χ2 mixture or F distribution, and power. Under
H0, all false positive rates (Table 4) are conservative except TGQ. The
LRT and score tests have Type I error rates that are closer to the nominal
level than theWald tests for the simulated null data (h2 = 0) but none
of them in the MC confidence interval (4.57%–5.42%). Also, the WLS
Wald tests had lower error rates than ML Wald tests. In terms of
power, the same pattern exists between tests and the LRT and TGQ are
the most powerful ones.

The conservative false positive rates are attributable to asymptotic
null distributions. In particular, the 50:50 mixture approximation has
recently been shown to be conservative, which we confirm here. On
the other hand, parametric null distribution of TGQ does not depend on
a mixture approximation and, under a normality assumption, it follows
F-distribution exactly; this is likely why GQ had the most accurate false
positive rate (4.36%).

Figs. 2 and 3 show the performance of permutation inference, with
rejection rates and power for different effect sizes under the various
permutation strategies. Fig. 2 shows that, generally permutation strate-
gy P1 is more conservative than P2, P3 and P4. Moreover the error rates
in terms of P2 are close to the nominal level. Although the permutation
strategy P4 has higher rejection rates, they still fall within the Monte
Carlo confidence interval (4.57%–5.43%) except for TW,ML.

With respect to power, Fig. 3 shows that again P2, P3 and P4 are gen-
erally superior to P1 for various effect sizes. In addition P2, P3 and P4
have almost same performance, all within the Monte Carlo confidence
bounds.
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permutation P-value for the 500 permutations used. The permutation P-values are
overplotted here, and only the permutation TGQ is visible. Parametric P-values for the
non-asymptotic GQ test (dashed red line) perform well, while the parametric score
test's P-values (dashed blue line) are severely anticonservative (invalid) and Wald test
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produce≈ 50 % P-values of 1 (0 in− log10P). Results based on GAW10 data with 2 fami-
lies, 138 subjects, 5000 realizations, 500 permutations each realization, and 96 × 96 × 20
images with 4 mm FWHM smoothing.
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DBased on all of these results, we selected TS, TW,WLS and TGQ and P2 as

the computationally most efficient tests to be considered in the image-
wise simulations.

Image-wise simulation results

Simulation 3
This simulation evaluates false positive rate control in themore chal-

lenging image-wise setting, for both voxel and cluster-wise heritability
inference. Fig. 4 shows the P–P plot of uncorrected P-values, plotted
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Fig. 6. Simulation 3 results, FWE error rates for cluster-wise permutation heritability infer-
ence under the null hypothesis, for three of our proposed test statistics. Score and GC test
have nominal false positive rates, while theWald test is anticonservative for high (uncor-
rected P of 0.005 & 0.001) clustering forming thresholds. This is likely due to use of para-
metric cluster-forming threshold; see text for more discussion. Results based on GAW10
data with 2 families, 138 subjects, 5000 realizations, 500 permutations each realization.
Monte Carlo 95% confidence interval (4.40%, 5.60%).
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as − log10P-values. Except for modest conservativeness (P ≈ 10−2.5),
and of course the truncation due to limited permutations (500 permu-
tations, minimal P-value of 0.002, maximum − log10P-value of 2.69),
the accuracy is quite good over-all. Fig. 5 show that FWE-corrected P-
values are also accurate, with slight conservativeness with the GQ test.
For the 5% level specifically, voxel-wise FWE for the score, the Wald
and the GQ tests were 5.08 %, 5.44 % and 5.4 % respectively, well within
the Monte Carlo 95% CI, (4.40%–5.60%).

Fig. 6 shows cluster-wise FWE rates for different cluster forming
thresholds. All rates are nominal except for the higher cluster forming
thresholds of TW,WLS (P = 0.005 & P = 0.001). The cluster-forming
thresholds come from the parametric null distribution, and Fig. 4
shows severe conservativeness for TW,WLS's parametric P-values. For ex-
ample, that figure shows that when a P = 0.001 uncorrected threshold
is used for TW,WLS, the actual false positive rate is less than 0.0001. This
effect, combined with variation of effective false positive rate of the
cluster-forming threshold over permutations, could explain this slight
anticonservativeness.
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Fig. 8. Real data results, comparison of voxel-wise heritability estimates fromML andWLS
estimates. The histograms show that the estimates from the two methods are largely
similar.
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Fig. 7 compares the selected test maximum cluster size P-values
based on different cluster forming thresholds with their theoretical
values; again TW,WLS behavior for large cluster forming thresholds
shows slightly inflated rejection rates.
E
D
 

Real data analysis

Voxel-wise FA heritability estimation and inference for the GOBS
study are shownwithML andWLS estimators, creating four test statistic
images: TL,ML, TS, TW,WLS, and TGQ; permutation scheme P2 was used to
compute uncorrected and FWE-corrected P-values. Fig. 8 shows histo-
grams of hML

2 (top) and hML
2 (bottom), showing generally the same dis-

tribution of heritability over the white matter skeleton. Fig. 10 shows
h2 estimates on the TBSS skeleton. Fig. 9 directly compares WLS and
MLheritability estimateswith a scatter plot, showing a slight but consis-
tent trend towards underestimation of hML

2 relative to hML
2 , consistent

with simulation (Fig. 1).
Fig. 9. Real data results, scatterplot of voxel-wise heritability estimates fromML andWLS
estimates. The two methods are largely similar, though ML is almost always larger than
WLS estimates.
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reference brain. Differences only apparent in highest FA areas.
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Voxel-wise uncorrected − log10 P-values from TS, TW,WLS, TGQ and
TL,ML based on P2 are compared in Fig. 11. Considering TL,ML as a refer-
ence (on the abscissa), TW,WLS and TGQ are generally less sensitive than
TL,ML (Fig. 11 middle and right panels), consistent with the simulations
above. However, TS was more comparable with TL,ML (Fig. 11 left
panel). Level 5% FWE-corrected statistic thresholds for TS, TW,WLS, TL,ML

and TGQ are 39.92, 18.31, 24.27 and 1.72, respectively, producing signif-
icant voxel counts of 8521, 1043, 7418 and 2446, respectively, out of
117,139 voxels.

Cluster-wise inference results for cluster forming thresholds
corresponded to uncorrected P-value = 0.01 % are shown in Table 5
the tests that we consider. Level 5% FWE-corrected cluster size thresh-
olds for TS, TW,WLS, TL,ML and TGQ are 265, 98, 142 and 135 voxels, respec-
tively. For voxel-wise inference, Fig. 12, the score test was most similar
to ML's LRT, and likewise for cluster-wise inference, Fig. 13.
U
N
C
O

Fig. 11. Real data results, scatter plots of voxel-wise uncorrected− log10P-values for score,WLSW
ML LRT P-values, while WLS Wald P-values tend to be more conservative; GQ P-values are mu
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EDiscussion & conclusions

We have proposed a number of computationally efficient tests for
heritability with family data. To our knowledge this is the first work
that enables practitioners to study brain phenotype heritability in each
voxel without confronting an intense computational burden. Our
methods are based on the eigensimplified model of Blangero et al.
(2013), most of which can be implemented with auxiliary models, cor-
responding to regressing squared OLS residuals on the kinship matrix
eigenvalues.

For heritability estimation our WLS method, based on one step of
Newton'smethod,was a fast and reasonable approximation to fully iter-
ated ML, ideal for application to brain image data.

For heritability inference, we found that parametric P-values for LRT,
Wald and score methods were all conservative, likely due to the
ald andGQ tests vs. theML LRT test. Score P-values aremost faithful representation of the
ch more different and generally more conservative.
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t5:1 Table 5
t5:2 Real data results, cluster-wise inferences with different methods.

t5:3 Method Total # of
clusters

# of significant
clusters

Largest cluster
size

Smallest corrected
P-value

t5:4 TL,ML 1770 22 24,246 0.0005
t5:5 TW,WLS 1725 19 3643 0.0003
t5:6 TS 1689 11 31,250 0.0003
t5:7 TGQ 1751 20 4383 0.0003

t5:8 Cluster-wise inference for TL,ML, TW,WLS, TS and TGQ. Based on 858 subjects from GOBS and
t5:9 3000 permutations.

11H. Ganjgahi et al. / NeuroImage xxx (2015) xxx–xxx
untenable i.i.d. assumption underlying the 50:50 χ2 mixture approxi-
mation. As an alternative, permutation test error ratesweremuch closer
than parametric one to the nominal level. Notably, all of our simulations
included fixed effects covariates (X).

The GQ heteroscedasticity test, adapted here for heritability detec-
tion, had good performance in simulation, with the best false positive
control and respectable power, but on the real data was dramatically
different (see Fig. 12) and apparently less powerful.
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(a) LRT for ML es

(b) Score T

(c) WALD test for WLS

(d) GQ Te

Fig. 12. Real data results, voxel-wise 5% FWE significant heritability, for 4 different methods. Fu
test gives very similar results to the ML (fully iterated) LRT, with the other 2 methods being le
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Image wise simulation results showed that FWE-corrected voxel-
and cluster-wise inference was valid at the 5% level for TS and TGQ, per-
mutation scheme P2. In real data, the P-values for TGQ were less similar
to the LRT results than the score orWald test, andwas less sensitive over
all. The GQ test's power depends on the cut point used to define the two
groups, though we did not investigate further. On balance we suggest
the use of TS for standard neuroimaging inference tool including voxel
and cluster-wise inference.

Running time for different test statistics that were presented in
Table 6 based on a benchmark with Intel(R) core(TM) i7-2600 CPU @
3.4 GH and 16 GB RAM feature confirms that the empirical null distribu-
tion of explained sum of squares of auxiliary model (TS) under the per-
mutation scheme P2 can be derived substantially faster than TL,ML, the
classic test statistic for heritability inference. Although the sample size
plays an important role in running time,we believe that TS can be derived
significantly faster than the other tests, since it does not depend on nu-
merical optimization. Hence, the whole permutation distribution can be
derived easily, either for a univariate trait or a multivariate spatially de-
pendent neuroimaging data accounting explicitly for family wise error.
E
D
 P

R
O

timator (TL,ML)

est (TS)

 estimator (TW,WLS)

st (TGQ)

ll skeleton and significant voxels are in green and red, respectively. The non-iterative score
ss sensitive.
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U
N
CFinally, we note that yet-more computationally efficient estimates

can be obtained by conditioning on the over-all variance estimate, σ̂2,
which leads to a 1-parameter variance model. However, in initial simu-
lationswe found that this lead to greater bias in h2 and specifically h2 es-
timates in excess of 1.0. Thus we retained the 2-parameter variance
model.
660

661

662Q9

663

664

665

666

667

Table 6
Computation times. Comparison of running times for a dataset with 138 subjects, 2 fami-
lies, (GAW10 kinship) and 184,320 voxels. Run on Intel(R) core(TM) i7-2600 CPU @ 3.4
GH and 16 GB RAM.

Statistics Univariate trait Image-wise trait

TL,ML 1 s 8 h
TW,WLS 0.005 s 2 s
TS 0.005 s 2 s
TGQ 0.004 s 1.5 s
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In conclusion, our results present a novel inference technique to be
implemented in the genetic imaging analysis software like SOLAR-
Eclipse (http://www.nitrc.org/projects/se_linux). These methods pro-
vide fast inference procedure on millions of phenotypes, filtering a
small number of elements for further investigationwithmore computa-
tional intense tools. In future work we will extend these tools for infer-
ence on covariates, in particular permutation-based tests for voxel-wise
GWAS analysis for family based data.

Uncited references

Kochunov et al., In Review
Servin and Stephens, 07 2007

Acknowledgments

This study was supported by R01 EB015611 (PK, TN), MH0708143
and MH083824 grants to DCG and by MH078111 and MH59490 to JB.
inference for family-based neuroimaging studies, NeuroImage (2015),

http://www.nitrc.org/projects/se_linux
http://dx.doi.org/10.1016/j.neuroimage.2015.03.005


668

669

670

671

672

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

749
750
751
752
753

13H. Ganjgahi et al. / NeuroImage xxx (2015) xxx–xxx
This work was also supported in part by a Consortium grant
(U54 EB020403) from the NIH Institutes contributing to the Big Data
to Knowledge (BD2K) Initiative, including the NIBIB and NCI. TN is sup-
ported by the Wellcome Trust.
T

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779Q10
780
781
782
783Q11
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
U
N
C
O

R
R
E
C

References

Allison, D.B., Neale, M.C., Zannolli, R., Schork, N.J., Amos, C.I., Blangero, J., 1999. Testing the
robustness of the likelihood-ratio test in a variance-component quantitative-trait
loci-mapping procedure. Am. J. Hum. Genet. 650 (2), 0 531–0 544.

Almasy, L., Blangero, J., 1998. Multipoint quantitative-trait linkage analysis in general
pedigrees. Am. J. Hum. Genet. 620 (5), 0 1198–0 1211.

Amemiya, T., 1977. A note on a heteroscedastic model. J. Econ. 60 (3), 0 365–0 370.
Amos, C.I., 1994. Robust variance-components approach for assessing genetic linkage in

pedigrees. Am. J. Hum. Genet. (3), 0 535–0 543.
Blangero, J., Almasy, L., 1997. Multipoint oligogenic linkage analysis of quantitative traits.

Genet. Epidemiol. 140 (6), 0 959–0 964.
Blangero, J., Diego, V.P., Dyer, T.D., Almeida, M., Peralta, J., Kent, J.W.,Williams, J.T., Almasy,

L., Göring, H.H.H., 2013. A Kernel of Truth: Statistical Advances in Polygenic Variance
Component Models for Complex Human Pedigrees. vol. 81. Academic Press.

Blokland, G.A., McMahon, K.L., Hoffman, J., Zhu, G., Meredith, M., Martin, N.G., Thompson,
P.M., de Zubicaray, G.I., Wright, M.J., 2008. Quantifying the heritability of task-related
brain activation and performance during the n-back working memory task: a twin
fMRI study. Biol. Psychol. 790 (1), 0 70–0 79.

Brouwer, R.M., Mandl, R.C., Peper, J.S., van Baal, G.C.M., Kahn, R.S., Boomsma, D.I., Pol,
H.E.H., 2010. Heritability of {DTI} and {MTR} in nine-year-old children. NeuroImage
530 (3), 0 1085–0 1092.

Buse, A., 1973. Goodness of fit in generalized least squares estimation. Am. Stat. (3),
106–108.

Buse, A., 1979. Goodness-of-fit in the seemingly unrelated regressions model: a general-
ization. J. Econ. 10.

Buse, A., 1984. Tests for additive heteroskedasticity: Goldfeld and Quandt revisited. Empir.
Econ. 90 (4), 0 199–0 216.

Cao, J., 1999. The size of the connected components of excursion sets of X2, t and F fields.
Adv. Appl. Probab. 310 (3), 0 579–0 595.

Chernoff, H., 1954. On the distribution of the likelihood ratio. Ann. Math. Stat. 250 (3),
573–578 (0 pp.).

Chiang, M.-C., Barysheva, M., Shattuck, D.W., Lee, A.D., Madsen, S.K., Avedissian, C.,
Klunder, A.D., Toga, A.W., McMahon, K.L., de Zubicaray, G.I., Wright, M.J., Srivastava,
A., Balov, N., Thompson, P.M., 2009. Genetics of brain fiber architecture and intellec-
tual performance. J. Neurosci. 290 (7), 0 2212–0 2224.

Chiang, M.-C., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., Hickie, I., Toga, A.W.,Wright,
M.J., Thompson, P.M., 2011. Genetics of white matter development: a {DTI} study of
705 twins and their siblings aged 12 to 29. NeuroImage (ISSN: 1053-8119) 540 (3),
0 2308–0 2317.

Crainiceanu, C., 2008. Likelihood ratio testing for zero variance components in linear
mixed models. In: Dunson, D. (Ed.), Random Effect and Latent Variable Model Selec-
tion. Lecture Notes in Statistics volume 192. Springer, New York, pp. 3–17.

Crainiceanu, C.M., Ruppert, D., 2004 aa. Restricted likelihood ratio tests in nonparametric
longitudinal models. Stat. Sin. 140 (3), 0 713–0 730.

Crainiceanu, C.M., Ruppert, D., 2004 bb. Likelihood ratio tests in linearmixedmodels with
one variance component. J. R. Stat. Soc. Ser. B (Stat Methodol.) 660 (1), 0 165–0 185.

Crainiceanu, C.M., Ruppert, D., 2004 cc. Likelihood ratio tests for goodness-of-fit of a non-
linear regression model. J. Multivar. Anal. 910 (1), 0 35–0 52.

den Braber, A., Bohlken, M.M., Brouwer, R.M., Ent, D. van 't, Kanai, R., Kahn, R.S., de Geus,
E.J.C., Hulshoff Pol, H.E., Boomsma, D.I., 2013. Heritability of subcortical brain mea-
sures: a perspective for future genome-wide association studies. NeuroImage 83C,
0 98–0 102.

Dominicus, A., Skrondal, A., Gjessing, H., Pedersen, N., Palmgren, J., 2006. Likelihood ratio
tests in behavioral genetics: problems and solutions. Behav. Genet. (ISSN: 0001-
8244) 360 (2), 0 331–0 340.

Draper, N., Stoneman, D., 1966. Testing for the inclusion of variables in linear regression
by a randomisation technique. Technometrics 80 (4), 0 695–0 699.

Drikvandi, R., Verbeke, G., Khodadadi, A., Partovi Nia, V., 2013. Testing multiple variance
components in linear mixed-effects models. Biostatistics 140 (1), 0 144–0 159
(Oxford, England).

Fitzmaurice, G.M., Lipsitz, S.R., Ibrahim, J.G., Sept. 2007. A note on permutation tests for
variance components in multilevel generalized linear mixed models. Biometrics
630 (3), 0 942–0 946.

Freedman, D., Lane, D., 1983. A nonstochastic interpretation of reported significance
levels. J. Bus. Econ. Stat. 10 (4), 0 292–0 298.

Freedman., D.a., Nov. 2007. How can the score test be inconsistent? Am. Stat. 610 (4), 0
291–0 295.

Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., Evans, A.C., 1994. Assessing the
significance of focal activations using their spatial extent. Hum. Brain Mapp. 10 (3), 0
210–0 220.

Genovese, C.R., Lazar, N.A., Nichols, T.E., 2002. Thresholding of statistical maps in function-
al neuroimaging using the false discovery rate. NeuroImage 150, 0 870–0 878.

Glahn, D.C., Thompson, P.M., Blangero, J., 2007. Neuroimaging endophenotypes: strategies
for finding genes influencing brain structure and function. Hum. Brain Mapp. 280 (6),
0 488–0 501.

Goldfeld, S., Quandt, R., 1965. Some tests for homoscedasticity. J. Am. Stat. 600 (310), 0
539–0 547.
Please cite this article as: Ganjgahi, H., et al., Fast and powerful heritability
http://dx.doi.org/10.1016/j.neuroimage.2015.03.005
E
D
 P

R
O

O
F

Hopper, J.L., Mathews, J.D., 1982. Extensions to multi-variate normal models for pedigree
analysis. Ann. Hum. Genet. 46, 0 373–0 383.

Jahanshad, N., Kochunov, P.V., Sprooten, E., Mandl, R.C., Nichols, T.E., Almasy, L., Blangero,
J., Brouwer, R.M., Curran, J.E., de Zubicaray, G.I., Duggirala, R., Fox, P.T., Hong, L.E.,
Landman, B.A., Martin, N.G., McMahon, K.L., Medland, S.E., Mitchell, B.D., Olvera,
R.L., Peterson, C.P., Starr, J.M., Sussmann, J.E., Toga, A.W., Wardlaw, J.M., Wright,
M.J., Pol, H.E.H., Bastin, M.E., McIntosh, A.M., Deary, I.J., Thompson, P.M., Glahn, D.C.,
2013. Multi-site genetic analysis of diffusion images and voxelwise heritability
analysis: a pilot project of the ENIGMA–DTI working group. NeuroImage 810, 0
455–0 469.

Kochunov, P., Glahn, D., Lancaster, J., Winkler, A., Smith, S., Thompson, P., Almasy, L.,
Duggirala, R., Fox, P., Blangero, J., 2010. Genetics of microstructure of cerebral white
matter using diffusion tensor imaging. NeuroImage 530 (3), 0 1109–0 1116.

Kochunov, P., Glahn, D., Lancaster, J., Thompson, P., Kochunov, V., Rogers, B., Fox, P.,
Blangero, J., Williamson, D., 2011a. Fractional anisotropy of cerebral white matter
and thickness of cortical gray matter across the lifespan. NeuroImage 580 (1), 0
41–0 49.

Kochunov, P., Glahn, D., Nichols, T., Winkler, A., Hong, E., Holcomb, H., Stein, J., Thompson,
P., Curran, J., Carless, M., Olvera, R., Johnson, M., Cole, S., Kochunov, V., Kent, J.,
Blangero, J., 2011b. Genetic analysis of cortical thickness and fractional anisotropy
of water diffusion in the brain. Front. Neurosci. 50 (120).

Kochunov, P., Jahanshad, N., Sprooten, E., Nichols, T.E., Mandl, R.C., Almasy, L., Booth, T.,
Brouwer, R.M., Curran, J.E., de Zubicaray, G.I., Dimitrova, R., Duggirala, R., Fox, P.T.,
Hong, L.E., Landman, B.A., Lemaitre, H., Lopez, L.M., Martin, N.G., McMahon, K.L.,
Mitchell, B.D., Olvera, R.L., Peterson, C.P., Starr, J.M., Sussmann, J.E., Toga, A.W.,
Wardlaw, J.M., Wright, M.J., Wright, S.N., Bastin, M.E., McIntosh, A.M., Boomsma,
D.I., Kahn, R.S., den Braber, A., de Geus, E.J., Deary, I.J., Pol, H.E.H., Williamson, D.E.,
Blangero, J., Ent, D. van 't, Thompson, P.M., Glahn, D.C., 2014. Multi-site study of addi-
tive genetic effects on fractional anisotropy of cerebral white matter: comparing
meta andmegaanalytical approaches for data pooling. NeuroImage 950, 0 136–0 150.

Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sproote, E., Nichols, T., Hong, L.,
Behrens, T., Andersson, E., J. and Yacoub, Ugurbil, K., Brouwer, C., Landman, B.,
Braber, A., Almassy, L., Fox, P., Olvera, R., Blangero, J., DC., G., Van Essen, D., 2014
aw. Heritability of fractional anisotropy in human white matter: a comparison of
Human Connectome Project and ENIGMA–DTI data. NeuroImage (In Review).

Koten, J.W., Wood, G., Hagoort, P., Goebel, R., Propping, P., Willmes, K., Boomsma, D.I.,
2009. Genetic contribution to variation in cognitive function: an fMRI study in
twins. Science 3230 (5922), 0 1737–0 1740.

Kremen, W.S., Prom-Wormley, E., Panizzon, M.S., Eyler, L.T., Fischl, B., Neale, M.C., Franz,
C.E., Lyons, M.J., Pacheco, J., Perry, M.E., Stevens, A., Schmitt, J.E., Grant, M.D.,
Seidman, L.J., Thermenos, H.W., Tsuang, M.T., Eisen, S.A., Dale, A.M., Fennema-
Notestine, C., 2010. Genetic and environmental influences on the size of specific
brain regions in midlife the VETSA MRI study. NeuroImage 490 (2), 0 1213–0 1223.

Lange, K., 2003. Mathematical and Statistical Methods for Genetic Analysis. 2nd ed.
Springer.

Lee, O.E., Braun, T.M., 2012. Permutation tests for random effects in linear mixed models.
Biometrics 680 (2), 0 486–0 493.

MacCluer, J.W., Blangero, J., Dyer, T.D., Speer, M.C., Jan. 1997. GAW10: simulated family
data for a common oligogenic disease with quantitative risk factors. Genet.
Epidemiol. 140 (6), 0 737–0 742.

Matthews, S.C., Simmons, A.N., Strigo, I., Jang, K., Stein, M.B., Paulus, M.P., 2007. Heritabil-
ity of anterior cingulate response to conflict: an fMRI study in female twins.
NeuroImage 380 (1), 0 223–0 227.

McKay, D., Knowles, E., Winkler, A., Sprooten, E., Kochunov, P., Olvera, R., Curran, J., Kent,
J., Jack, W., Carless, M., GÃ¶ring, H., Dyer, T., Duggirala, R., Almasy, L., Fox, P., Blangero,
J., Glahn, D., 2014. Influence of age, sex and genetic factors on the human brain. 80
(2), 0 143–0 152.

Molenberghs, G., Verbeke, G., Feb. 2007. Likelihood ratio, score, and Wald tests in a
constrained parameter space. Am. Stat. 610 (1), 0 22–0 27.

Morgan, B.J.T., Palmer, K.J., Ridout, M.S., Nov. 2007. Negative score test statistic. Am. Stat.
610 (4), 0 285–0 288.

Neyman, J., Pearson, E.S., 1933. On the problem of the most efficient tests of statistical hy-
potheses. Philosophical Transactions of the Royal Society of LondonSeries A, Contain-
ing Papers of a Mathematical or Physical Character 231 pp. 289–337 (0 pp).

Nichols, T.E., Hayasaka, S., 2003. Controlling the familywise error rate in functional neuro-
imaging: a comparative review. Stat. Methods Med. Res. 120 (5), 0 419–0 446.

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional neuro-
imaging: a primer with examples. Hum. Brain Mapp. 150 (1), 0 1–0 25.

Olvera, R., Bearden, C., Velligan, D., Almasy, L., Carless, M., Curran, J., Williamson, D.,
Duggirala, R., Blangero, J., Glahn, D., 2011. Common genetic influences on depression,
alcohol, and substance use disorders in Mexican–American families. Am. J. Med.
Genet. B Neuropsychiatr. Genet. 1560 (5), 561–568.

Polk, T.A., Park, J., Smith,M.R., Park, D.C., 2007. Nature versus nurture in ventral visual cor-
tex: a functional magnetic resonance imaging study of twins. J. Neurosci. 270 (51),
13921–13925.

Rao, C.R., 2008. John Wiley & Sons, Inc.
Rimol, L.M., Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Fischl, B., Franz, C.E., Hagler,

D.J., Lyons, M.J., Neale, M.C., Pacheco, J., Perry, M.E., Schmitt, J.E., Grant, M.D., Seidman,
L.J., Thermenos, H.W., Tsuang, M.T., Eisen, S.a., Kremen,W.S., Dale, A.M., 2010. Cortical
thickness is influenced by regionally specific genetic factors. Biol. Psychiatry 670 (5),
0 493–0 499.

Salimi-Khorshidi, G., Smith, S.M., Nichols, T.E., 2010. Adjusting the effect of nonstationarity
in cluster-based and TFCE inference. NeuroImage 540 (3), 2006–2019.

Samuh, M.H., Grilli, L., Rampichini, C., Salmaso, L., Lunardon, N., 2012. The use of permu-
tation tests for variance components in linear mixed models. Commun. Stat. - Theory
and Methods 410 (16-17), 3020–3029.
inference for family-based neuroimaging studies, NeuroImage (2015),

http://dx.doi.org/10.1016/j.neuroimage.2015.03.005


835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

871

14 H. Ganjgahi et al. / NeuroImage xxx (2015) xxx–xxx
Self, S.G., Liang, K.-Y., 1987. Asymptotic properties of maximum likelihood estimators and
likelihood ratio tests under nonstandard conditions. J. Am. Stat. Assoc. 820 (398),
605–610 0 pp.

Servin, B., Stephens, M., 07 2007. Imputation-based analysis of association studies:
candidate regions and quantitative traits. 30 (7).

Shephard, N., 1993. Maximum likelihood estimation of regression models with stochastic
trend components. J. Am. Stat. Assoc. 880 (422), 590–595 (0 pp.).

Shephard, N.G., Harvey, A.C., 1990. On the probability of estimating a deterministic
component in the local level model. J. Time Ser. Anal. 110 (4), 339–347.

Silvapulle, M.J., 1992. Robust Wald-type tests of one-sided hypotheses in the linear
model. J. Am. Stat. Assoc. 870 (417), 156–161.

Silvapulle, M.J., Silvapulle, P., 1995. A score test against one-sided alternatives. J. Am. Stat.
Assoc. 900 (429), 0 342–0 349.

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E.,
Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-
based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage
310 (4), 1487–1505.

Stram, D.O., Lee, J.W., 1994. Variance components testing in the longitudinal mixed effects
model. Biometrics 500 (4), 1171–1177.
U
N
C
O

R
R
E
C
T

Please cite this article as: Ganjgahi, H., et al., Fast and powerful heritability
http://dx.doi.org/10.1016/j.neuroimage.2015.03.005
ter Braak, C.J., 1992. Permutation Versus Bootstrap Significance Tests in Multiple
Regression and ANOVA, volume 376 of Lecture Notes in Economics andMathematical
Systems. Springer, Berlin Heidelberg.

Verbeke, G., Molenberghs, G., 2003. The use of score tests for inference on variance com-
ponents. Biometrics 590 (2), 254–262 (0 pp.).

Verbeke, G., Molenberghs, G., Nov. 2007. What can go wrong with the score test? Am.
Stat. 610 (4), 0 289–0 290.

Winkler, A.M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P.T., Duggirala, R.,
Glahn, D.C., 2010. Cortical thickness or grey matter volume? The importance of
selecting the phenotype for imaging genetics studies. NeuroImage 530 (3), 0
1135–0 1146.

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., Feb. 2014. Permu-
tation inference for the general linear model. NeuroImage (ISSN: 1095-9572) 92C, 0
381–0 397. http://dx.doi.org/10.1016/j.neuroimage.2014.01.060.

Worsley, K.J., Evans, A.C., Marrett, S., Neelin, P., Nov. 1992. A three-dimensional statistical
analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 120
(6), 0 900–0 918.
E
D
 P

R
O

O
F

inference for family-based neuroimaging studies, NeuroImage (2015),

http://dx.doi.org/10.1016/j.neuroimage.2014.01.060
http://dx.doi.org/10.1016/j.neuroimage.2015.03.005

	Fast and powerful heritability inference for family-�based neuroimaging studies
	Introduction
	Theory
	Original and eigensimplified polygenic models
	Heritability estimation and test statistics
	Test statistics
	Likelihood ratio test
	Wald test
	Score test
	Goldfeld and Quandt (GQ) test

	Permutation test for heritability inference
	Partial model permutation (P1)
	Null model residual permutation (P2)
	Full model residual permutation (P3)
	Full model whitened residual permutation (P4)
	Multiple testing correction


	Evaluation
	Simulation studies
	Simulation 1
	Simulation 2
	Simulation 3

	Application in diffusion tensor imaging data

	Results
	Univariate heritability simulation results
	Simulation 1
	Simulation 2

	Image-wise simulation results
	Simulation 3

	Real data analysis

	Discussion & conclusions
	Uncited references
	Acknowledgments
	References


